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We have been valuing ISRU technologies based on
their economic impact on scarce launch mass.

Historically, ISRU has been valued for its However, launch mass is expected to be less scarce in
potential to reduce launch mass the future of crewed space missions to Mars
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Question: how to calculate the total expected value
of the ISRU technology portfolio for crewed missions?

Problem statement: seek a method and a unit of measure
to calculate the total expected value of investing in ISRU.

Fabricating / repairing systems:

Life Support, Mobility, Food,
Cryo Fluids Management ipatre
arts

Habitats, Roads, Landing Pads, Life support
e consumables,
Berms, Towers, Ultilities

including food

Liquid oxygen, methane,
hydrogen, nitrogen
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ASTRA Methodology and Approach
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Figure 6: Advanced Space Technology Roadmapping Architecture (ASTRA) methodology with inputs on the lefi, the key steps with
guiding questions in the center and the outputs on the right side. The technology investment efficient frontier made up of a set of
Pareto-optimal porifolios (see lower right) is the main output. Final decisions are made by human decision-makers.
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Operationalizing ASTRA to calculate “value of ISRU”

1. Define a goal-driven, stakeholder-value-related Figure of Merit for ISRU-
enabled human exploration architectures

2. To quantify the impact of ISRU technologies on this Figure of Merit, build a
detailed tradespace exploration model that can generate and score
alternative architectures from varying ISRU technology inputs

3. Calculate the top-level Figure of Merit and Lifecycle Cost for alternative

architectures with varied ISRU technology selections and a range of
assumptions for their performance under uncertainty

4. Use outputs to construct efficient portfolios of technologies that trade off
risk vs. return, where return is typically defined as benefit at cost and risk
is typically defined as the variance of the return.
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1. Select an Appropriate Goal-driven Figure of Merit

Define a goal-driven, stakeholder-value-related Figure of
Merit for ISRU-enabled human exploration architectures
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Goals define value. However, to capture value efficiently,
we must make good use of scarce resources.

WHY GO?

Humans go into space because there is

inherent benefit of space exploration to

humanity. Uniquely, NASA balances all

the benefits to achieve a strategy that can

withstand time and change. See Appendix A

for more detail on the intersecting areas NATIONAL

between pillars. . orme POSTURE
o Global Influence

National Aeronautics and Space Administration (2023). “NASA’'s Moon to Mars Strategy and Obijectives
Development: A blueprint for sustained human presence and exploration throughout the Solar System”
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Approach: anchor the Figure of Merit to human space
exploration value-related goals and to resource(s) that
we expect to be scarce.

BUT WHAT ARE THE
VALUE-RELATED GOALS SCARCE RESOURCE(S)?

(not mass)

AU New scientific and
. technological knowledge:
“Life, and learning to live,

on other worlds”

Successful mission to Mars
and safe return of the

__ crew: “Atriumph of the
_ human spirit”

?

Inspiration and National u
Posture: “One giant,
sustainable leap for all
humankind”
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Scarcity lies at the heart of economics

“Economics deals with scarcity, which arises
because the resources available are limited
to satisfy our unlimited needs and wants.”
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A leading candidate for a scarce resource in a post-
mass world: Crew Time Services.

3
/
N
J 3

* Free crew time remaining after personal time and after supporting mission
systems = time available to be utilized for mission value-related goals

Image Credit: NASA
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We define ‘Mission Value time’ as the time available
after crew time liens required for health & survival.

« Benefit Proxy Metric: ‘Mission Value Full-Time Equivalent’ (MVFTE) Persons on Mars
« Cost Metric: Lifecycle cost {per MVFTE, per year}
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2. Build a Tradespace Exploration Model

To quantify the impact of ISRU technologies on this Figure of
Merit and on the Cost Metric, build a detailed tradespace
exploration model that can generate and score alternative

architectures from varying ISRU technology inputs
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Case Study: NASA'’s 2023 RASC-AL
“Homesteading Mars” Challenge

Main Theme Requirements — “Earth-independence-establishing mission”

* Minimum of 4 crew, operating from at least one site on Mars

« Minimum surface stay of 7 years for each crew member, followed by safe return
* No mass limit for infrastructure pre-deployment

« However, limit of 2-years-worth of pre-deployed food and spares

* And, a stringent resupply limit of just 5 tons every 2 years

Design challenges for a 7-year mission with minimal resupply
« Mitigating risks to crew health, especially from radiation

» Dealing with failures of critical systems

« Delivering Mission Value to NASA and the US taxpayer

Source and full competition details: https://rascal.nianet.org
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‘Pale Red Dot’

Case Study St

Mars Makerspace for ' _
High Manufacturability Two villages near each other, 18

crew per village with 100% food
production and space to thrive,
not just survive.

of in-situ parts
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Two critical sub-models: Crew Time sub-model (515
lines) and Manufacturability sub-model
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3. Calculate Figure of Merit and Cost

Calculate the top-level Figure of Merit and Lifecycle Cost for
alternative architectures with varied ISRU technology selections.

In this study, we varied the level of versatility / capability of the
Makerspace and computed the effects to the intermediate
variables of Manufacturability and Crew Time.

(/S\) S R s Generalized Model of ISRU Technology Valuation for Mars Sgigeilardos

WORKSHOP

—

e glordos@mit.edu



Crew-hours per week

Results from Pale Red Dot crew time model

Analysis of crew-hours per week for crew sizes from 4-21 (single village) and 12-42 (two villages)
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Modeled lifecycle cost for alternative architectures

F . . . i

Pale Red Dot Total Funding Requirement Over Time One village, 6 crew, 7

. years, with 2.2 MVFTE,
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4. Construct efficient portfolios of technologies

Use outputs to construct efficient portfolios of technologies that
trade off risk vs. return, where return is typically defined as
benefit at cost and risk is typically defined as the variance of the

return.
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ASTRA Methodology and Approach
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Next week — presenting Pale Red Dot at 2023 RASC-AL
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Future work — ASTRA Cloud Tool to support portfolio construction
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